

NAU Flooding Mitigation, Garden Design, and Storm Water Utilization

CENE 486C Presentation

Lucas Zirotti Naser Alqaoud Chelena Betoney Michael Swearingen

Figure 2: Butterfly garden [2]

Figure 1: Rolle Activity Center [1]

Figure 3 Vicinity and site [3]

Problem Statement

 Facility Services wants to mitigate flooding at Rolle Activity Center Office of Sustainability wants a garden between APS Substation and Pine Knoll Dr.

Figure 4: Flooding area behind Rolle Activity Center [4]

Figure 5: Proposed area for garden next to APS Substation [4]

Surveying

- Shot NAU's parking lot 46 and the east side of Pine Knoll Drive in front of APS Substation
- Accumulated ~1,600 points

Figure 8: PapographyesiteslagdattmthecTeianbdeuBangBSutynit datbtanedTAintbleABBOOVR&DDotic Total Station [6]

Hydrology – Rational Method

Rational Equation: $Q = C \cdot i \cdot A \cdot C_f$

Table 1 Rational Method results for area at Rolle Activity Center [7]

Rational Method		
Basin Area, A (ft ²)	26,638	
Impervious Surface (ft ²)	11,375	
Pervious Surface (ft ²)	15,263	
Runoff Coefficient (Lawn Sandy Soils) ¹	0.10	
Runoff Coefficient (Roofs/Concrete) ¹	0.95	
Flooding Area (ft ²)	3021	
Composite Coefficient, C	0.59	
¹ City of Flagstaff Stormwater Management Design Manual -		
Rational Runoff Coefficients		

Table 2 Results based on type of storm and duration [7,8]

Rolle Activity Flooding Area					
Average Recurrence	Duration of	Duration of Precipitation Precipitation Flow Rate, Q			
Interval (yrs)	Storm (hrs)	Frequency, <i>i</i> (in) ¹	Factor, C_f^2	(ft ³ /s)	(ft)
25	1	1.65	1.1	0.66	0.78
50	1	1.93	1.2	0.84	1.00
100	1	2.23	1.25	1.01	1.20
25	2	1.82	1.1	0.36	0.86
50	2	2.12	1.2	0.46	1.10
100	2	2.44	1.25	0.55	1.32
¹ NOAA Atlas 14 PDS - based point precipitation frequency estimates with 90% confidence intervals					
² City of Flagstaff Stormwater Management Design Manual - Antecedent Precipitation Factors based					

²City of Flagstaff Stormwater Management Design Manual - Antecedent Precipitation Factors basec on storm frequency

Figure 8: Rational Method area of focus [6]

Hydrology – SCS TR-55 CN Method

SCS Equation: $Q = (P-0.2S)^2/(P+0.8S)$

Table 3,4. SCS TR-55 CN Method results for volume of retention basin [6]

SCS TR-55 CN		
Total Basin Area (acres)	31	
Basin Area, 15A (acres)	27	
Basin Area, 17 (acres)	4	
Hydrologic Soil group, 15A ¹	C	
Hydrologic Soil group, 17 ¹	D	
CN, 15A ²	77	
CN, 17 ²	70	
Composite CN	76.02	
S	3.15	
¹ Web Soil Survey - Hydrological Properties		
² City of Flagstaff Stormwater Management Design Manual Curve numbers for hydrologic soil group		

Retention Basin				
Average Recurrence Rainfall, Flow Rate, Volume c				
Interval (yrs)	<i>P</i> (in)	Q (ft ³ /s)	Water (ft ³)	
25	1.65	0.249	28,011	
50	1.93	0.379	42,656	
100	2.23	0.538	60,553	

Figure 9: SCS TR-55 CN area of focus [5]

Alternative Design #1

Culvert Design

- Reduce flooding at Rolle Activity Center by gravity
- Design culvert to cross under roadway
 - Fill retention pond

Figure 10: Culvert Design using AutoCAD

Alternative Design #2

Sump Pump

- Reduce flooding at Rolle Activity Center and convey water to retention basin on south side of Pine Knoll Drive
- Water will be used to irrigate the community garden

Figure 11: Sump pump system schematic [9]

Alternative Design #3

Grading Change Design

- Regrading landscape to naturally mitigate flooding
- Sheet flow is directed towards Sinclair Wash

NAU Storm and Garden

Meeting Constraints

Mitigate flooding from Rolle Activity Center

X Culvert Design – Possibility of flooding due to back flow

Sump Pump Design – Mitigates flooding without concerns

✓ Grade Change – Effectively mitigate flooding

Irrigate a proposed butterfly garden near APS Substation

✓ Culvert Design – Transport water across street near garden

✓ Sump Pump Design – Transport water across street near garden

X Grade Change – Water is transported to Sinclair Wash

System Profile

System Properties

- Well dimensions: 15' x 5' x 15'
- Pipe lengths:
 - 4" pipe = 1.5'
 - 6" pipe = 56.5'

- Pipe fittings:
 - 4" to 6" expansion
 - 6" 90 degree elbow
 - Pipe outlet cover

Selecting a Pump

Energy Equation: Q = $P_1/\gamma_w + V_1^2/2g + z_1 + h_p = P_2/\gamma_w + V_2^2/2g + z_2 + h_1$

Table 5 Well design and drainage results [10]

System Properties		
$\Delta \text{pressure}, P_2 - P_1 (\text{psi})$	0	
Unit Weight of Water, γ_w (lb/ft ³)	62.4	
Gravity, g (ft/s ²)	32.2	
Elevation of Water Surface, z ₁ (ft)	6,879.15	
Elevation of Pipe Outlet, z ₂ (ft)	6,882.37	
Diameter of Pipe A (in)	4	
Diameter of Pipe B (in)	6	
Length of Pipe A (ft)	1.5	
Length of Pipe B (ft)	56.5	
1 Kgradual expansion	0.72	
K _{90° elbow flanged} 1	0.3	
Kswing check valve	2	
K _{outlet grate} ¹	0.05	
¹ Analysis of Flow in Pipes - minor los	s coefficients	

Table 6. DL-15 TOYO Pump [11]

Selected Pump		
Capacity (gpm)	890	
Head of Pump (ft)	15	

Sump Pump – Well Design

Table 7 Well Design and drainage results

Well and Sump Pump Characteristics		
Area of Well (gallons)	8415.6	
Pump Capacity (gpm)	890	
100 Year Storm Flow Rate (gpm)	453.3	
Initial Time of Detention (min.)	13.9	
Well Drainage Rate (gpm)	436.7	
Time to Drain Well Entirely (min.)	14.5	

Figure 15: Plan view of sump pump well using AutoCAD Civil 3D

NAU Storm and Garden

Retention Pond

- Volume: 67,200 *f t*³
- Exterior slope 1:1
- Island preserving existing tree

Figure 16: Plan view of retention pond using AutoCAD Civil 3D

Conceptual Landscape Layout

Butterfly Garden

- Native nectar plants
- Added pond
- Boardwalk
- Seating Area

Figure 17: Visual representation of the conceptual landscape layout using 3D SketchUp NAU Storm and Garden

Maintenance Plan

- Pump components
- Cleaning the well to prevent clogging
- Cleaning out pipe of vegetation

NORTHERN ARIZONA UNIVERSITY —	Maintenance Plan
NAU Sum	ap Pump System and Well
	NORTHERN ARIZONA UNIVERSITY
	Prepared By:
ZABS Inc.:	Lucas Zirotti, Naser Alqaoud,
Chelena B	etoney, and Mike Swearingen
	Prepared For:
Ν	AU Facility Services
	Date:
1	November 28, 2017
	Page 1

Figure 18: Maintenance plan cover page

NAU Storm and Garden

Impacts – Triple Bottom Line

Social

• Aesthetically appealing to students and faculty

Environmental

- Butterfly garden increases pollination, promotes environmental awareness, and require fewer resources to maintain []
- Storm water utilization

Economic

- Protects Rolle Activity Center flooding damages
- Creates job opportunity

Project Hours and Consulting Cost

Table 8 Proposed vs. Actual project hours and consulting costs

Desition	Hourly Poto (\$)	Task Hours		Consulting Cost (\$)	
Position	Hourry Rate (\$)	Projected	Actual	Projected	Actual
Project Manager	120	160	136	26,400	8,280
Sr. Engineer (P.E.)	105	272	224	18,960	18,960
Jr. Engineer (E.I.T.)	90	304	236	27,240	31,320
Licensed Surveyor	75	72	72	6,240	6,240
	Total	808	668	\$ 78,840.00	\$ 64,800.00

Total Project Cost

Table 9 Material and service costs [11, 12, 13]

ltem	Material	Unit	Quantity	Unit Cost (\$)	Total Cost (\$)
1	4-inch Sch. 40 PVC	feet	1	8.62	8.62
2	6-inch Sch. 40 PVC	feet	7	39.60	277.20
3	6-inch PVC 90 degree elbow	Each	2	10.98	21.96
4	4 in. x 6in. PVC Reducer coupling	Each	1	7.02	7.02
5	6-inch drainage grate cap	Each	1	4.24	4.24
6	TOYO DL-15 Sump Pump	Each	1	8,445.00	8,445.00
				Total	\$8,764.04
ltem	Services	Unit	Quantity	Unit Cost (\$)	Total Cost (\$)
1	Horizontal boring	feet	61.5	400	24,600.00
2	Excavation of soil	cubic yard	953.5	30	28,605.00
3	Installation of TOYO DL-15	Each	1	1,022	1,022.00
				Total	\$ 54,227.00

Table 10 Consulting Services Costs

Project Costs	Cost (\$)
Consulting	64,800.00
Material	8,764.04
Service	54,227.00
Total	\$ 127,791.04

References

- [1] "Louie's Legacy Rolle Activity Center", Library.nau.edu, 2017. [Online]. Available: http://library.nau.edu/speccoll/exhibits/louies_legacy/rolle.html. [Accessed: 22- Apr- 2017].
- [2] "Butterfly Garden", 2017. [Online]. Available: http://ucnj.org/parks-recreation/trailside-nature-science-center/butterfly-garden-2/. [Accessed: 22- Apr- 2017].
- [3] "Google Maps", *Google Maps*, 2017. [Online]. Available: https://www.google.com/maps. [Accessed: 22- Apr- 2017].
- [4] Problem Statement Gallery, "Rolle Flooding Area", Swearingen, 2017.
- [5] Problem Statement Gallery, "Site Ground View", Swearingen, 2017.
- [6] "ArcGIS Online", Arcgis.com, 2017. [Online]. Available: https://www.arcgis.com/home/webmap/viewer.html?webmap=55ebf90799fa4a3fa57562700a68c405.
- [7] "City of Flagstaff Stormwater Management Design Manual", Flagstaff.az.gov, 2017. [Online]. Available: https://www.flagstaff.az.gov/DocumentCenter/Home/View/54885. [Accessed: 04- Oct- 2017].
- [8] "Web Soil Survey Home", Websoilsurvey.sc.egov.usda.gov. [Online]. Available: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm. [Accessed: 17- Sep- 2017].
- [9] "Is Your Sump Pump Constantly Running? | GillecePlumbing Blog", Gilleceplumbing.com, 2017. [Online]. Available: http://gilleceplumbing.com/plumbing/is-your-sump-pumpconstantly-running/. [Accessed: 31- Oct- 2017].
- [10] "Minor Loss", analysisofflowinpipes, 2017. [Online]. Available: https://analysisofflowinpipes.jimdo.com/contents/minor-head-loss/. [Accessed: 03- Nov- 2017].
- [11] "Hevvy Pumps Toyo Pumps is now Hevvy Pumps", Hevvy Pumps, 2017. [Online]. Available: https://hevvypumps.com/. [Accessed: 27- Nov- 2017].
- [12] Homedepot.com,2017. [Online]. Available: https://www.homedepot.com/. [Accessed: 27- Nov- 2017].
- [13] "Bid Item History", Apps.azdot.gov. [Online]. Available: https://apps.azdot.gov/e2c2/HistoricalPrice.aspx. [Accessed: 29- Nov- 2017].